15 min read

 In this article by J. Powell, the author of the book Mastering vRealize Automation 6.2, we put together a design and build vRealize Automation 6.2 from POC to production. With the knowledge gained from this article, you should feel comfortable installing and configuring vRA.

In this article, we will be covering the following topics:

  • Proving the technology
  • Proof of Concept
  • Proof of Technology
  • Pilot
  • Designing the vRealize Automation architecture

(For more resources related to this topic, see here.)

Proving the technology

In this section, we are going to discuss how to approach a vRealize Automation 6.2 project. This is a necessary component in order to assure a successful project, and it is specifically necessary when we discuss vRA, due to the sheer amount of moving parts that comprise the software. We are going to focus on the end users, whether they are individuals or business units, such as your company’s software development department. These are the people that will be using vRA to provide the speed and agility necessary to deliver results that drive the business and make money.

If we take this approach and treat our co-workers as customers, we can give them what they need to perform their jobs as opposed to what we perceive they need from an IT perspective. Designing our vRA deployment around the user and business requirements, first gives us a better plan to implement the backend infrastructure as well as the service offerings within the vRA web portal. This allows us to build a business case for vRealize Automation and will help determine which of the three editions will make sense to meet these needs.

Once we have our business case created, validated, and approved, we can start testing vRealize Automation. There are three common phases to a testing cycle:

  • Proof of Concept
  • Proof of Technology
  • Pilot implementation

We will cover these phases in the following sections and explore whether you need them for your vRealize Automation 6.2 deployment.

Proof of Concept

A POC is typically an abbreviated version of what you hope to achieve during production. It is normally spun up in a lab, using old hardware, with a limited number of test users.

Once your POC is set up, one of two things happen. First, nothing happens or it gets decommissioned. After all, it’s just the IT department getting their hands dirty with new technology. This also happens when there is not a clear business driver, which provides a reason to have the technology in a production environment.

The second thing that could happen is that the technology is proven, and it moves into a pilot phase.

Of course, this is completely up to you. Perhaps, a demonstration of the technology will be enough, or testing some limited outcomes in VMware’s HOL for vRealize Automation 6.2 will do the trick.

Due to the number of components and features within vRA, it is strongly recommended that you create a POC, documenting the process along the way. This will give you a strong base if you take the project from POC to production.

Proof of Technology

The object of a POT project is to determine whether the proposed solution or technology will integrate in your existing IT landscape and add value. This is the stage where it is important to document any technical issues you encounter in your individual environment. There is no need to involve pilot users in this process as it is specifically to validate the technical merits of the software.

Pilot implementation

A pilot is a small scale and targeted roll out of the technology in a production environment. Its scope is limited, typically by a number of users and systems. This is to allow testing, so as to make sure the technology works as expected and designed. It also limits the business risk.

A pilot deployment in terms of vRA is also a way to gain feedback from the users who will ultimately use it on a regular basis. vRealize Automation 6.2 is a product that empowers the end users to provision everything as a service. How the users feel about the layout of the web portal, user experience, and automated feedback from the system directly impacts how well the product will work in a full-blown production scenario. This also gives you time to make any necessary modifications to the vRA environment before providing access to additional users.

When designing the pilot infrastructure, you should use the same hardware that is used during production. This includes ESXi hosts, storage, fiber or Internet Small Computer System Interface (iSCSI) connectivity, and vCenter versions. This will take into account any variances between platforms and configurations that could affect performance.

Even at this stage, design, attention to detail, and following VMware best practices is key. Often, pilot programs get rolled straight into production. Adhering to these concepts will put you on the right path to a successful deployment.

To get a better understanding, let’s look at some of the design elements that should be considered:

  • Size of the deployment: A small deployment will support 10,000 managed machines, 500 catalog items, and 10 concurrent deployments.
  • Concurrent provisioning: Only two concurrent provisions per endpoint are allowed by default. You may want to increase this limit to suit your requirements.
  • Hardware sizing: This refers to the number of servers, the CPU, and the memory.
  • Scale: This refers to whether there will be multiple Identity and vRealize Automation vApps.
  • Storage: This refers to pools of storage from Storage Area Network (SAN) or Network Attached Storage (NAS) and tiers of storage for performance requirements.
  • Network: This refers to LANs, load balancing, internal versus external access to web portals, and IP pools for use with the infrastructure provisioned through vRA.
  • Firewall: This refers to knowing what ports need to be opened between the various components that make up vRA, as well as the other endpoint that may fall under vRA’s purview.
  • Portal layout: This refers to the items you want to provide to the end user and the manner in which you categorize them for future growth.
  • IT Business Management Suite Standard Edition: If you are going to implement this product, it can scale up to 20,000 VMs across four vCenter servers.
  • Certificates: Appliances can be self-signed, but it is recommended to use an internal Certificate Authority for vRA components and an externally signed certificate to use on the vRA web portal if it is going to be exposed to the public Internet.

VMware has published a Technical White Paper that covers all the details and considerations when deploying vRA. You can download the paper by visiting http://www.vmware.com/files/pdf/products/vCloud/VMware-vCloud-Automation-Center-61-Reference-Architecture.pdf.

VMware provides the following general recommendation when deploying vRealize Automation: keep all vRA components in the same time zone with their clocks synced. If you plan on using VMware IT Business Management Suite Standard Edition, deploy it in the same LAN as vCenter. You can deploy Worker DEMs and proxy agents over the WAN, but all other components should not go over the WAN, as to prevent performance degradation.

Here is a diagram of the pilot process:

Designing the vRealize Automation architecture

We have discussed the components that comprise vRealize Automation as well as some key design elements. Now, let’s see some of the scenarios at a high level. Keep in mind that vRA is designed to manage tens of thousands of VMs in an infrastructure. Depending on your environment, you may never exceed the limitations of what VMware considers to be a small deployment.

The following diagram displays the minimum footprint needed for small deployment architecture:

A medium deployment can support up to 30,000 managed machines, 1,000 catalog items, and 50 concurrent deployments. The following diagram shows you the minimum required footprint for a medium deployment:

Large deployments support 50,000 managed machines, 2,500 catalog items, and 100 concurrent deployments. The following diagram shows you the minimum required footprint for a large deployment:

Design considerations

Now that we understand the design elements for a small, medium, and large infrastructure, let’s explore the components of vRA and build an example design, based on the small infrastructure requirements from VMware. Since there are so many options and components, we have broken them down into easily digestible components.

Naming conventions

It is important to give some thought to naming conventions for different aspects of the vRA web portal. Your company has probably set a naming convention for servers and environments, and we will have to make sure items provisioned from vRA adhere to those standards. It is important to name the different components of vRealize Automation in a method that makes sense for what your end goal may be regarding what vRA will do. This is necessary because it is not easy (and in some cases not possible) to rename the elements of the vRA web portal once you have implemented them.

Compute resources

Compute resources in terms of vRA refers to an object that represents a host, host cluster, virtual data center, or a public Cloud region, such as Amazon, where machines and applications can be provisioned. For example, compute resources can refer to vCenter, Hyper-V, or Amazon AWS. This list grows with each subsequent release of vRA.

Business and Fabric groups

A Business group in the vRA web portal is a set of services and resources assigned to a set of users. Quite simply, it is a way to align a business department or unit with the resources it needs. For example, you may have a Business group named Software Developers, and you would want them to be able to provision SQL 2012 and 2014 on Windows 2012 R2 servers.

Fabric groups enable IT administrators to provide resources from your infrastructure. You can add users or groups to the Fabric group in order to manage the infrastructure resources you have assigned. For example, if you have a software development cluster in vCenter, you could create a Fabric group that contains the users responsible for the management of this cluster to oversee the cluster resources.

Endpoints and credentials

Endpoints can represent anything from vCenter, to storage, physical servers, and public Cloud offerings, such as Amazon AWS. The platform address is defined with the endpoint (in terms of being accessed through a web browser) along with the credentials needed to manage them.

Reservations

Reservations refer to how we provide a portion of our total infrastructure that is to be used for consumption by end users. It is a key design element in the vRealize Automation 6.2 infrastructure design. Each reservation created will need to define the disk, memory, networking, and priority. The lower their number, the higher will be the priority. This is to resolve conflicts in case there are multiple matching reservations. If the priorities of the multiple reservations are equal, vRA will choose a reservation in a round-robin style order:

In the preceding diagram, on the far right-hand side, we can see that we have Shared Infrastructure composed of Private Physical and Private Virtual space, as well as a portion of a Public Cloud offering. By creating different reservations, we can assure that there is enough infrastructure for the business, while providing a dedicated portion of the total infrastructure to our end users.

Reservation policies

A reservation policy is a set of reservations that you can select from a blueprint to restrict provisioning only to specific reservations. Reservation policies are then attached to a reservation. An example of reservations policies can be taken when using them to create different storage policies. You can create a separate Bronze, Silver, and Gold policy to reflect the type of disk available on our SAN (such as SATA, SAS, and SDD).

Network profiles

By default, vRA will assign an IP address from a DHCP server to all the machines it provisions. However, most production environments do not use DHCP for their servers. A network profile will need to be created to allocate and assign static IPs to these servers. Network profile options consist of external, private, NAT (short for Network Address Translation), and routed. For the scope of our examples, we will focus on the external option.

Compute resources

Compute resources are tied in with Fabric groups, endpoints, storage reservation policies, and cost profiles. You must have these elements created before you can configure compute resources, although some components, such as storage and cost profiles, are optional. An example of a compute resource is a vCenter cluster. It is created automatically when you add an endpoint to the vRA web portal.

Blueprints

Blueprints are instruction sets to build virtual, physical, and Cloud-based machines, as well vApps. Blueprints define a machine or a set of application properties, the way it is provisioned, and its policy and management settings. For an end user, a blueprint is listed as an item in the Service Catalog tab. The user can request the item, and vRA would use the blueprint to provision the user’s request. Blueprints also provide a way to prompt the user making the request for additional items, such as more compute resources, application or machine names, as well as network information. Of course, this can be automated as well and will probably be the preferred method in your environment.

Blueprints also contain workflow logic. vRealize Automation contains built-in workflows for cloning snapshots, Kickstart, ISO, SCCM, and WIM deployments. You can define a minimum and maximum for CPU, memory, and storage. This will give end users the option to customize their machines to match their individual needs.

It is a best practice to define the minimum for servers with very low resources, such as 1 vCPU and 512 MB for memory. It is easy to hot add these resources if the end user needs more compute after an initial request. However, if you set the minimum resources too high in the blueprint, you cannot lower the value. You will have to create a new blueprint.

You can also define customized properties in the blueprints. For example, if you want to provide a VM with a defined MAC address or without a virtual CD-ROM attached, you can do so. VMware has published a detailed guide of the Custom Properties and their values. You can find it at http://pubs.vmware.com/vra-62/topic/com.vmware.ICbase/PDF/vrealize-automation-62-custom-properties.pdf.

Custom Properties are case sensitive. It is recommended to test Custom Properties individually until you are comfortable using them. For example, a blueprint referencing an ISO workflow would fail if you have a Custom Property to remove the CD-ROM.

Users and groups

Users and groups are defined in the Administration section of the vRA web portal. This is where we would assign vRA specific roles to groups. It is worth mentioning when you login to the vRA web portal and click on users, it is blank. This is because of the sheer number of users that could be potentially allowed to access the portal and would slow the load time. In our examples, we will focus on users and groups from our Identity Appliance that ties in to Active Directory.

Catalog management

Catalog management consists of services, catalog items, actions, and entitlement. We will discuss them in more detail in the following sections.

Services

Services are another key design element and are defined by the vRA administrators to help group subsets of your environment. For example, you may have services defined for applications, where you would list items, such as SQL and Oracle databases. You could also create a service called OperatingSystems where you would group catalog items, such as Linux and Windows. You can make these services active or inactive, and also define maintenance windows when catalog items under this category would be unavailable for provisioning.

Catalog items

Catalog items are essentially links back to blueprints. These items are tied back to a service that you previously defined and helped shape the Service Catalog tab that the end user will use to provision machines and applications. Also, you will entitle users to use the catalog item.

Entitlements

As mentioned previously, entitlements are how we link business users and groups to services, catalog items, and actions.

Actions

Actions are a list of operations that gives a user the ability to perform certain tasks with services and catalog items. There are over 30 out of the box action items that come with vRA. This includes creating and destroying VMs, changing the lease time, as well as adding additional compute resources. You also have the option of creating custom actions as well.

Approval policies

Approval policies are the sets of rules that govern the use of catalog items. They can be used in the pre or post configuration life cycle of an item. Let’s say, as an example, we have a Red Hat Linux VM that a user can provision. We have set the minimum vCPU to 1, but have defined a maximum of 4. We would want to notify the user’s manager and the IT team when a request to provision the VM exceeds the minimum vCPU we have defined.

We could create an approval policy to perform a pre-check to see if the user is requesting more than one vCPU. If the threshold is exceeded, an e-mail will be sent out to approve the additional vCPU resources. Until the notification is approved, the VM will not be provisioned.

Advanced services

Advanced services is an area of the vRA web portal where we can tie in customized workflows from vRealize Orchestrator. For example, we may need to check for a file in the VM’s operating system once it has been deployed. We need to do this to make sure that an application has been deployed successfully or a baseline compliance is in order. We can present vRealize Orchestrator workflows for end users to leverage in almost the same manner as we do IaaS.

Summary

In this article, we covered the design and build principles of vRealize Automation 6.2. We discussed how to prove the technology by performing due diligence checks with the business users and creating a case to implement a POC. We detailed considerations when rolling out vRA in a pilot program and showed you how to gauge its success.

Lastly, we detailed the components that comprise the design and build of vRealize Automation, while introducing additional elements.

Resources for Article:


Further resources on this subject:


LEAVE A REPLY

Please enter your comment!
Please enter your name here