Data

This self-driving car can drive in its imagination using deep reinforcement learning

2 min read

Wayve, a new U.K. self-driving car startup, trained a car to drive in its imagination using a model-based deep reinforcement learning system. This system helps the prediction model to learn from real-world data collected offline. The car observes the motion of other agents in the scene, predicts their direction, thereby, making an informed driving decision.

Dreaming to drive

The deep reinforcement learning system was trained using data collected during sunny weather in Cambridge, UK. The training process used World Models (Ha & Schmidhuber, 2018), with monocular camera input on an autonomous vehicle. Although the system has been trained for the sunny weather, it can still successfully drive in the rain. It does not get distracted by the reflections produced by puddles or the droplets of water on the camera lens.

Dreaming to drive in the rain

The underlying training process

Firstly, the prediction model was trained on the collected data. A variational autoencoder was used to encode the images into a low dimensional state. After this, a probabilistic recurrent neural network was trained to develop a prediction model. This helps estimate the next probabilistic state based on the current state and action. Also, an encoder and prediction model is trained using the real-world data.

Once that is done, a driving policy is initialized and its performance is assessed using the prediction model in simulated experiences. Similarly, many simulated sequences can be trained, by imagining experiences. These imagined sequences can also be visualized to observe the learned policy.

“Using a prediction model, we can dream to drive on a massively parallel server, independent of the robotic vehicle. Furthermore, traditional simulation approaches require people to hand-engineer individual situations to cover a wide variety of driving scenarios. Learning a prediction model from data automates the process of scenario generation, taking the human engineer out of the loop” reads the Wayve blog post.

Generally, there are differences in appearance and behavior between simulator solutions and the real world, making it challenging to leverage knowledge acquired in the simulation. Wayve’s deep reinforcement learning system does not have this limitation as the system is trained directly using the real-world data. Hence, there is no major difference between the simulation and the real world.

Finally, as the learned simulator is differentiable, it is easy to directly optimize a driving policy using gradient descent.

“Wayve is committed to developing richer and more robust temporal prediction models and believe this is key to building intelligent and safe autonomous vehicles,” says the Wayve team.

For more information, check out the official Wayve blog post.

Read Next

What we learned from CES 2018: Self-driving cars and AI chips are the rage!

Tesla is building its own AI hardware for self-driving cars

MIT’s Duckietown Kickstarter project aims to make learning how to program self-driving cars affordable

Natasha Mathur

Tech writer at the Packt Hub. Dreamer, book nerd, lover of scented candles, karaoke, and Gilmore Girls.

Share
Published by
Natasha Mathur
Tags: AI News

Recent Posts

Top life hacks for prepping for your IT certification exam

I remember deciding to pursue my first IT certification, the CompTIA A+. I had signed…

3 years ago

Learn Transformers for Natural Language Processing with Denis Rothman

Key takeaways The transformer architecture has proved to be revolutionary in outperforming the classical RNN…

3 years ago

Learning Essential Linux Commands for Navigating the Shell Effectively

Once we learn how to deploy an Ubuntu server, how to manage users, and how…

3 years ago

Clean Coding in Python with Mariano Anaya

Key-takeaways:   Clean code isn’t just a nice thing to have or a luxury in software projects; it's a necessity. If we…

3 years ago

Exploring Forms in Angular – types, benefits and differences   

While developing a web application, or setting dynamic pages and meta tags we need to deal with…

3 years ago

Gain Practical Expertise with the Latest Edition of Software Architecture with C# 9 and .NET 5

Software architecture is one of the most discussed topics in the software industry today, and…

3 years ago