12 min read

 

Oracle Enterprise Manager Grid Control 11g R1: Business Service Management

Oracle Enterprise Manager Grid Control 11g R1: Business Service ManagementA Hands-on guide to modeling and managing business services using Oracle Enterprise Manager 11g R1.

Business Service Management (BSM) is a key area in today’s IT management arena. In the context of IT infrastructure management, there has been a major shift in the decision making process. The questions driving these decisions have moved from why do we need this to how can we achieve this. The answer to this question requires IT management to be viewed as a business enabler as opposed to a support function.

Complexity in data centers

IT infrastructure has transformed itself from being a necessary evil to that of a key business enabler, helping companies develop solutions to differentiate them from their competitors. IT infrastructure in modern day enterprises is the backbone that helps them stand straight with their head above the competition. To this effect, the data center landscape, which hosts this infrastructure, has evolved from a few servers in an obscure corner room of a building to that of thousands of servers in different buildings spread across various geographies. The technologies deployed in these data centers also have transformed from Mainframe and Unix systems, running e-mail and legacy applications to heterogeneous, distributed solutions involving database, middleware servers, Commercial off the Shelf (COTS), packaged, and custom applications. Further, these products and solutions interact among themselves to provide external facing business services and enable day-to-day internal business operations. The advent of Web 2.0 and cloud computing and niche features such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) have further complicated the landscape.

The following image shows a functional view of a typical enterprise IT infrastructure:

The infrastructure consists of both external and internal applications serving various classes of users. These users access various applications through different access points and devices. Even though actual IT infrastructures are far more intricate depending on the business domain of the enterprise, the above minimalist view clearly demonstrates the complexities involved. To this view, if we add the collaborations among the various entities, the topology becomes almost unmanageable. The following is a very simplistic illustration of the physical topology of the infrastructure that supports the earlier functional view:

It can be seen how, IT impacts every aspect of the business operations—ranging from customer care to end user interactions to accounting to employee self service. Needless to say, the performance of the IT infrastructure is a key driver towards the success of the enterprise business.

This complexity in the IT landscape necessitates deployment of a highly sophisticated management solution across the enterprise. Such a solution must be able to manage all aspects of the IT infrastructure, starting from physical hosts and devices to packaged applications. While the solution should definitely cater to managing disparate components individually, it must also provide visibility into the complex business processes and usage of the underlying infrastructure. The former view is required as a tool for day-to-day IT operations by system administrators and support personnel who know the physical topology very well. The latter view provides the CXO-level senior management with invaluable insight into the effectiveness of the underlying infrastructure in driving business operations.

Many of the applications and business processes interact with each other and come together, to provide meaningful services to both external and internal users. Such interactions are achieved using diverse technologies and architectures such as SOA, web services, cloud computing, Web 2.0, and so on. These services must also cater to the availability and performance expectations of customers and internal users. These expectations are formally referred to as service-levels. The commitment on availability and performance of these services, commonly referred to as business services by the service provider, is defined formally using Service-Level Agreements or SLAs. Enterprise-wide management of these business services including their service levels requires technology-independent perspectives that provide the CXOs with the big picture. The above management concepts fall under the broad category of BSM.

Modeling

Prior to discussing the various modeling options, it is important to understand the necessity of modeling the IT infrastructure. As discussed in the previous section, a typical data center consists of numerous heterogeneous hardware and software components. The hardware components present in a data center are as varied as network routers, switches, machines ranging from servers to desktops, Mainframes, storage devices, load balancers, and so on. The software components deployed on such hardware are significantly more diverse such as operating systems, databases, application servers, middleware, and so on. In an enterprise data center, both hardware and software will be sourced from multiple vendors. To further add another layer of complexity, it is very likely that multiple versions of the same software product, from the same vendor, could be deployed across the enterprise.

As an example, the data center of a large commercial bank could contain network switches and routers from Cisco, Mainframes from IBM, and industry standard servers from HP. This hardware will be utilized to run mission-critical CRM applications from Oracle running on Oracle middleware and Oracle Real Application Cluster (RAC) databases running a Solaris operating system. These applications would interact with Enterprise Resource Planning (ERP) systems from SAP. There will also be custom applications built in-house, running on Oracle WebLogic Application Server. In the previous topology, although the database used by both CRM and ERP systems could be supplied by Oracle, their versions could be different, that is, Oracle Database 10g and Oracle Database 11g.

In a large enterprise, the CTO staff will comprise various teams of administrators having focused responsibilities on managing different components within the data center. For instance, network engineers will be assigned network router operations whereas DBAs will be responsible for database maintenance. In addition, there will be a set of administrators who maintain the enterprise applications such as CRM, Siebel, and so on. Such administrators are responsible for regular operational tasks of different components in the data center. The DBAs will need to perform regular tasks such as re-indexing, performing backup and recovery, managing table spaces, and so on. The application administrators will be handling configuration of middleware, deployment of applications, provisioning users, and so on. In addition to the regular tasks, these administrators will also be responsible for the stability and health of their respective areas.

These operational teams will be complemented by a strategy team that will be responsible for IT budgeting and planning. These teams will be responsible for driving the efficiency of IT infrastructure and operations. As an example, the CTO strategy team might have a goal of increasing the IT hardware utilization by 10 percent for a fiscal year. Another goal may be to project the additional hardware requirements to support an upcoming business strategy. In order to achieve such goals, the team will require data such as usage, operational efficiency, capacity, and so on. The data requirements will be both current and historical.

The strategy and the operations team need to work together to meet the compliance requirements. These requirements touch areas such as security, configuration, and storage. While the strategy team is responsible for setting compliance standards and goals, the administrators are entrusted with the responsibility of ensuring that these compliance levels are adhered to. To illustrate this, let us consider the security requirements on a CRM On-Demand application. In order to meet a specific customer security requirement around passwords, the administrator will have to configure the applications accordingly.

It is clear from the above explanation that the different responsibilities require focused perspectives of the IT infrastructure. The focused perspectives must enable the administrators to view their components of interest. They must also include other components that are dependent on these as well as the areas on which a component is dependent on. Since the different components in a data center do not operate in isolation and interact with one another, it is imperative that the IT staff get a holistic view of the enterprise IT topology.

DBA perspective: An example

To simplify the previous explanation with an example, let’s consider the perspective required by the DBA. The DBA will require a database-centric view, which shows all the databases in the enterprise. This perspective must allow the DBA to also figure out the host on which a specific database instance runs. It is equally important to understand the applications that use a specific database instance. These perspectives allow the administrators to view the dependencies between components. Let’s consider a DBA of an Oracle database running on a Solaris operating system and servicing a travel portal. Due to security requirements, the Oracle database needs to be patched. As a prerequisite to this, the DBA needs to figure out the underlying operating system details so as to ensure that all the mandatory operating patches have been applied to the host. Moreover, the DBA needs to work with the administrators of all travel applications using this database instance to schedule a maintenance window when this patch can be applied. In the absence of the above holistic view, the DBA will not be able to project the business impact of this IT maintenance.

The following image provides a perspective of a component-centric view of the database used in the travel portal and primarily caters to the database administrators.

Oracle Enterprise Manager 11g R1: An Overview of Business Service Management

The previous image is an illustration of the database-centric view of the travel portal. This view is centered on the database and shows both the physical infrastructure used by the database and the travel portal application that depends on the database.

Composite view: An example

A different perspective is required by the strategy team. The strategy team will require a view that maps a specific business function to the IT infrastructure. This perspective will detail out the various components in the data centered that collaborate with each other to provide a certain business function. This view will also highlight the relationship among the different components.

Continuing with the same travel portal example in the previous section, the strategy team responsible for the portal will need a view of all the components such as hosts, databases, middleware, and applications required by the travel portal. This view will enable them to identify the IT usage in providing the business functions to project the capacity requirements so as to meet the business goals. In the above scenario, this translates to the strategy team being able to project the additional hardware requirement correctly in order to meet a 20 percent surge in user traffic forecasted by the business teams.

The following image provides such a holistic view of all the components used in travel portal:

Oracle Enterprise Manager 11g R1: An Overview of Business Service Management

Such a view provides the necessary visibility to the strategy team in determining the infrastructure utilized to provide the business service. This mapping between the business functions and the underlying IT infrastructure comes in handy, not only in identifying the components providing a specific business function, but also by enabling to project the impact of a component on the business functions.

Business view: An example

In addition to these two perspectives, business strategy demands yet another paradigm to view the IT infrastructure. The data center provides numerous business services through its IT infrastructure. While the two views discussed in the previous sections provide insight into the components that are part of a business service, they clearly lack the ability to depict the business service itself. However, the above views are the first key steps towards representing the actual business service. It is important to visualize each of these business services as an entity by themselves. Such a business service-centric perspective will provide vital information at a service level.

Such a business-centric view is a key enabler in representing the services for both the service provider as well as the service consumer. The service-level assurance will vary depending on the category of consumers. These business services might be provided for external users such as partners, sales channels, or end customers. For example, the travel portal will be used by end users to book their regular travel. It will also be utilized by airline and hotel partners. The consumers of the above business services can also be internal. For example, the sales teams in the travel portal business would like to use the portal for booking tickets for their own travel. The service consumers may also be categorized based on geographical location. For instance, the travel portal will have dedicated data centers for specific user locations such as U.S., Europe, and Asia Pacific. During U.S. holidays, the U.S. data center for the travel portal must be geared to meet additional customer traffic.

Needless to say, the service provider must monitor the services as well as their respective service levels for each category of users. In the absence of a business-centric view, it will be cumbersome for the IT staff to translate the business priorities to the required IT configurations.

This outlook allows the service provider to gather key data, such as the general health of the business service that is provided, as well as quantitative and qualitative descriptions of the service levels. The general health of the service is measured as availability of the business service. The quantitative measure of a service is described using usage metrics while performance metrics indicate the quality of the service. This perspective also enables the IT staff in determining if their service-level assurances with each category of consumers are met.

Each of these different perspectives helps in visualizing different aspects of the same IT infrastructure. Such perspectives are therefore termed as models. The individual components within the data center are modeled as targets or manageable entities. The holistic view of the infrastructure that combines the functional interactions between various targets is defined as a system model. The perspective that facilitates the service provider in getting the business view of the infrastructure is termed as a service model.

LEAVE A REPLY

Please enter your comment!
Please enter your name here